
Czech Technical University in Prague
Faculty of electrical engineering
Department of cybernetics

Counting repetitions of exercises
from body worn sensors

Diploma thesis

DRAFT VERSION

Michal Šustr
michal.sustr@gmail.com

Prague, 2015

1

mailto:michal.sustr@gmail.com

1) Prostudujte existuj́ıćı zař́ızeńı a principy využ́ıvané při automatickém sledováńı pohy-
bové aktivity při fyzickém tréninku s použit́ım váhy vlastńıho těla nebo činkami jako jsou
dřepy, kliky, mrtvý tah, bicepsový zdvih a podobně.

2) S dodaným experimentálńım HW (pohybové senzory) vykonejte na několika lidech
měřeńı pr̊uběhu zvolených cvik̊u pro źıskáńı surových dat k daľśımu zpracováńı. Data
rovněž poskytněte k obecnému použit́ı.

3) S využit́ım metod jako Hidden Markov Models, Dynamic Time Warping, Support Vec-
tor Machines nebo jinými vhodnými metodami navrhněte postup pro robustné poč́ıtáńı
opakováńı vybraných cvik̊u.

4) Zhodnot’te nejvhodněǰśı umı́stěńı těchto senzor̊u na těle člověka (ruce, nohy, pas,
. . .), dále nutný počet senzor̊u, jejich vzorkovaćı frekvenci a zejména úspěšnost poč́ıtáńı
opakováńı zvolených cvik̊u.

Abstrakt

Táto práca popisuje algoritmus pre poč́ıtanie počtu opakovańı cvičeńı pri použit́ı
senzorov merajúcich zrýchlenie a rotačnú rýchlost’ umiestnených na tele človeka.
Rozpoznáva sa pohyb pri cvičeńı s vlastnou váhou tela. Senzory sú umiestnené
na rôznych častiach tela pre zistenie najvhodneǰsej polohy pri ktorej algoritmy
majú najvyššiu úspešnost’. Pri vývoji metódy je kladený dôraz na ńızku časovú a
pamät’ovú náročnost’, aby algoritmy boli vhodné pre implementáciu do jednočipových
procesor̊u. Algoritmy sú testované na nameranom dátovom sete pozostávajúcom z
cvičeńı s rôznymi osobami.

Abstract

This thesis describes algorithm for counting number of repetition of exercises us-
ing body-worn sensors measuring acceleration and rotational speed. The movement
is recognized for body-weight exercises. The sensors are placed at different parts
of the body to find the most appropriate locations where the algorithms have the
highest accuracy. While developing this method low time and memory constraint is
considered, so that the algorithms are appropriate for implementation in embedded
devices. Algorithms are tested on acquired dataset of workout with various people.

Acknowledgement

I would like to express my gratitude to my thesis advisor Petr Novák for his heart-warming
approach and long discussions during lunch, Jan Sedivy for his project support in eClub,
Marek Novak and Martin Borysek for help with the hardware and to my family and
friends for their support throughout my studies.

Prohlášeńı

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informačńı zdroje v souladu s Metodickým pokynem o dodržováńı etických prin-
cip̊u při př́ıpravě vysokoškolských závěrečných praćı.

V Praze, dne 25. 4. 2016

Contents

1 Introduction 1

1.1 Current status . 1

1.2 Goals of this thesis . 2

1.3 Structure of this thesis . 4

2 Task analysis 5

2.1 Available data . 5

2.2 Measurement sensors . 8

2.3 Domain knowledge of exercise . 10

2.4 Finding the best placement . 11

2.5 Similar problems . 11

3 Hardware 13

3.1 Measurement hardware . 13

3.2 Implementation hardware . 15

4 Theory and analysis of algorithms 16

4.1 Input data . 16

4.2 Simple types of analysis of signal . 17

4.2.1 Thresholding . 17

4.2.2 Correlation . 17

4.2.3 Dynamic time warping . 18

4.3 Hidden Markov models . 21

4.3.1 Vector quantization . 21

4.3.2 Discrete hidden Markov models . 23

4.3.3 Structure of hidden Markov model 25

4.3.4 Training the model . 27

4.3.5 Finding hidden states . 30

4.4 Improving accuracy of HMM . 32

4.4.1 Exercise repetition template . 33

4.4.2 Multi layer perceptron . 33

4.4.3 Updating precision of segmentation marks 34

5 Recognition system design 35

5.1 Raw data acquisition . 35

5.2 Preprocessing . 36

5.3 Vector quantization . 37

5.4 Segmentation . 39

5.5 Classification . 42

5.6 Rep counting . 42

6 Implementation 43

6.1 Datalogger . 43

6.2 Offline training/evaluation . 43

6.2.1 Directory tree . 44

6.2.2 Data format . 44

6.3 Embedded device . 44

7 Evaluation 46

7.1 Dataset . 46

7.2 Experimental setup . 49

7.3 Parameters of the model . 50

7.4 Results . 51

7.4.1 Best model parameters . 52

7.4.2 Placement on the body . 53

7.4.3 Accuracy of counting repetitions . 55

8 Conclusions 56

A Software 61

A.1 Collecting data program . 61

B Visualisation of exercises (acceleration values) 62

C Learning curves 66

Chapter 1

Introduction

1.1 Current status

During last few years there has been a big emergence of various fitness trackers / wearables
with the purpose of tracking daily motion activity, fitness or life functions of their users
(see Figure 1.1). They commonly use accelerometers, gyroscopes and heart-rate monitors
to measure data. The number of producers is increasing, mainly because of the decrease
of cost of electronic parts required for manufacture. Sensors are sometimes 100x cheaper
than in the last decade because of the wide-spread of smartphones.

There are many companies on the market, such as Samsung, Apple, Fitbit, Mio, Sony,
Garmin, TomTom, Nike, Asus and others. The available devices are unfortunately closed.
Ordinary developer is not able to implement their own software and algorithms in these
commercial devices, or just have the ability to gain raw data suitable for next processing,
experiments or research. This fact makes the existing devices usable only for commercial
purposes and not for scholar or experimental purposes.

Not only professional sportsmen, but also ordinary people are getting more used to using
digital sport trainers while performing sport activities. It can be various special sport
watches or bands or applications on smartphones, where they can set and track their
progress towards desired goals like weight loss, muscle gain, competition preparation, etc.

However, none of these devices provide the benefit of tracking specific exercises while
moving in a gym or a workout park. This would be useful for exact evaluation of workout
progress of each individual as they try to follow their long-term workout plans to reach
their desired goals.

This is the reason why I decided to create this thesis: to automatically recognize the
number of repetitions of exercises from body worn sensors. There is some work done in
this area (as in [32, 24, 10]) which served as inspiration for this thesis. My ultimate goal

1

is to be able to evaluate complicated motion directly on embedded devices (commonly
called wearables). By complicated motion I mean exercises that are combined together in
creative ways. I would like to be able to use it in other sports as well where the emphasis
is in performing the motion in a beautiful smooth way, such as in parkour, freerunning
or gymnastics. I would like to evaluate correctness, smoothness and the overall beauty of
performance to provide very insightful advice for the user about how he should improve
his technique. This advice would be difficult to acquire otherwise, because alternative
recording on cameras is often obscured by various body parts. This thesis is a stepping
stone towards this goal as I hopefully plan on further developing these algorithms.

1.2 Goals of this thesis

Main goals of this thesis are:

� Study the existing devices and priciples for automatic recognition of movement
activity for physical training.

� Collect raw data of selected exercises of various people with provided measurement
hardware from multiple positions on the body. Align all of the data into a single
stream that has uniform sample frequency. Provide the collected data.

� Use appropriate methods to robustly count the number of repetitions of selected
exercises, while keeping them computationally cheap enough for the use in embedded
devices.

� Evaluate the best placement of these sensors on the body, their required number
and the error rate of counting.

� Create simple implementation for embedded device.

Figure 1.1: Search of words related to fitness tracking by Google Trends.
Original at http://jdem.cz/bt4kj3

2

http://jdem.cz/bt4kj3

This thesis is however not concerned about:

� The optimal construction of the measurement hardware and transmission of data
(compression, encryption, safety etc.).

� Detailed documentation of the hardware.

� The automatic recognition of exercises without prior information. The counting of
repetitions is in only one type of movement. The goal is not to create universal
recognition of various kinds of movement, but counting of repetitions of one single
type of exercise and differentiating it from other free motion.

The brief overview of history of the project is:

� I found the simplest way how to get acceleration data from one sensor. I had no
knowledge or experience in this area, so I thought it would be a good start. For
this I used breadboard that contained only the sensor, processor and bluetooth and
I collected data via bluetooth to a phone. This helped to answer questions like if it
is even possible to do this kind of recognition and if low frequency (50Hz) is good
enough.

� Since the data looked reasonable, we created a pair of devices with a friend Martin
Borýsek based on Arduino Dues that can log the data on SD card or transfer it to
cell phone via bluetooth (see 3.2). The underlying assumption was that one device
is not enough to recognize the movements complexly, but two devices placed on arm
and leg might be enough for the task.

� It isn’t immediately apparent what kind of information is needed for good recogni-
tion: do I need acceleration {and,or,xor} gyroscopic data? What is the best position
on the body? Through eClub summer school I got hold of new special hardware
that had 8 distinct sensors that could be placed on the body.

� However there were some big problems with collecting data because of packet loss
and I wasted a lot of time unfortunately. I had to repeat it again with improved
system described in 7.2.

� I coded the algorithms and evaluation framework for the movement recognition and
started to play with different approaches to the problem, using different settings
etc.

� Once I have found good classifier I created implementation for embedded hardware.

3

1.3 Structure of this thesis

This thesis is structured in following way:

� Chapter 2 shows the most important knowledge of the domain to solve the task,
how the physical reality of the problem affects the input data and where the data
comes from.

� Chapter 3 introduces hardware that was used for capture of the data and imple-
mentation in embedded device.

� Chapter 4 presents theoretical approach for signal processing algorithms and their
advantages and disadvantages.

� Chapter 5 outlines the design of the recognition system.

� Chapter 6 shows the most important information about the implementation that is
available in the attached CD.

� Chapter 7 presents the results of evaluation on available dataset.

� Chapter 8 concludes the works of this thesis.

4

Chapter 2

Task analysis

In this chapter I present basic task analysis, how the physical reality of the problem affects
the input data, where the data comes from and the domain knowledge of exercise that
can be used in recognition model design.

2.1 Available data

The best information that one could have for evaluating person’s motion is by using a
grid of points that mark multiple (x,y,z) positions in space x of his body parts at each
time step t. In this case we could create a model for physical activity using time series
x(t) and probabilistically determine that the person is most likely to be sitting, standing,
laying down, walking, etc., which is reffered to commonly as activity recognition. The
methods that can be used to capture point locations include using commercially available
motion capture systems (like in Figure 2.1), using RGBD camera1 or ensemble or RGBD
cameras (such as in Microsoft’s Kinect). There are some recent works in pose estimation
from visual inputs using deep learning [6].

However, acceleration can be measured much more easily than exact position in space, it
doesn’t require difficult processing of the camera data and there are very cheap sensors
available. Acceleration is the second derivative of position. One could think of using
integration to get back the positions in space, but that cannot be done well because
of integration drift. Accelerometers coupled with gyroscope (which measures rotational
speed) called commonly IMU are good sources of acceleration data and can be used for
recognition successfully as well.

Finding location in space is important problem for flying UAVs2 which also use IMUs.
Most commonly they use GPS for localization, because it gives a relatively precise location

1RGBD - RGB camera which perceives scene depth (D)
2UAV - unmanned aerial vehicle

5

Figure 2.1: Grid of points that mark positions in space of various body parts captured
with motion capture.

for a low cost and combine this data with IMU to determine angular deviation (yaw, pitch,
roll) of the vehicle. There have been works in localizing using on board cameras [21].
However, none of these are applicable for my task for obvious reasons.

One could think of trying to solve the integration drift by using magnetometer data
with some clever technique to combine it with acceleration and angular speed, like using
Kalman filters. The magnetometer points at Earth’s magnetic north and therefore it
reduces the uncertainty of location in one axis. However this suffers from a problem - in
a gym there is usually a lot of iron, the person might lift some dumbbells which would
completely confuse the sensors.

Another idea might consist in trying to have some magnet on the body, or maybe exter-
nally. The magnet would provide a fixed orientation point and again with some clever
filtering we could get some nice localization. But quick investigation shows this is not
physically feasible. Look at Figure 2.2. Let’s suppose that we want that under any con-
dition the deviation α of the direction of magnetic vector from the magnet is less than 3◦

compared to Earth’s magnetic field. The strength of magnetic field of Earth is somewhere
between 〈25; 65〉 nano tesla3. Then the magnetic force at distance of L = 1m must be
Bx = Be

tanα
= 25nT

tan 3◦
= 16mT. Usual permanent magnets have ”intrinsic induction” of

about Bi = 0.4T . Let’s use a small, practical permanent magnet of size 2 × 3 × 0.5 cm.
By modelling permanent magnet as a magnetic dipole moment4 we can predict at what

3http://www.crystalinks.com/earthsmagneticfield.html
4Source of information and equations: https://tiggerntatie.github.io/emagnet/offaxis/

mmoffaxis.htm

6

http://www.crystalinks.com/earthsmagneticfield.html
https://tiggerntatie.github.io/emagnet/offaxis/mmoffaxis.htm
https://tiggerntatie.github.io/emagnet/offaxis/mmoffaxis.htm

L=1.0m

Be

Bx

B

α
NS

Earth S

Figure 2.2:

distance we can actually generate the influence of 16mT:

Bx =
µ0M

4π

[
3 cos2 α− 1

L3

]
(2.1)

M(p) =
BiV

µ0

For permanent magnets, magnetized in a single direction (2.2)

M(e) = NiA For air core electromagnets (solenoid) (2.3)

Bx =
BiV

4π

[
3 cos2 α− 1

L3

]
(2.4)

L =

(
BiV (3 cos2 α− 1)

4πBx

)1/3

=

(
0.4T · 3 · 10−6m3(3 cos2(3◦)− 1)

4π16 · 10−3T

)1/3

= 2.3 cm

(2.5)

That is only 2.3 cm with ordinary magnet! The Earth’s magnetic field is actually about
100x stronger at distance of just L = 1m. Unfortunately, the field’s influence decreases
cubicly with distance, so this approach cannot be used.

Let’s suppose we would use external magnets (although such system wouldn’t be easy to
use for a normal user). If we are in a room and we would want to satisfy the angular
condition up to distance of 10 meters, then the magnetic dipole moment (using 2.1) must
be:

M =
4πBxL

3

µ0(3 cos2 α− 1)
=

4π · 16 · 10−3T ∗ (10m)3

1.256 · 10−6Tm/A(3 cos2(3◦)− 1)
= 8.037 · 107Am2 (2.6)

What could be a power consumption of such a magnet? If we take a coil with N = 104

turns and A = 1dm2 = 10−2m2 area, then the current going through this coil has to be
about

I =
Me

NA
=

8 · 107Am2

104 · 10−2m2
= 8 · 105A (2.7)

7

which is not realizable at all, not even for a shorter distance (L=3m is about just about
one order less of current size) - there’s no point to even consider power consumption - it
would be huge!

There are many works that use only data from IMUs to recognize person’s activity. Some
are using sensors embedded in smartphones [24, 3, 5, 29, 10] or they use specialized
hardware to do so [4].

One example of activity recognition could be detecting person’s fall, which is interesting
for example in applications for elderly people assistance (calling ambulance in the case of
fainting [34]).

The IMU are good enough for the application of counting the number of repetition of
exercises, since they are cheap and provide enough distinct data [24, 4]. It is actually not
necessary to have full (x,y,z) positions in space.

Person’s activity influences the heart rate (HR) based on the difficulty of activity. One
can think of using this data to help with recognition. However, this idea of using another
input has been discarded. Heart rate has low correlation with the actual start and end
of movement[30] - once the person starts to exercise his HR goes up, but it has a long
inertia until it comes back to rest and therefore it is not discriminative.

2.2 Measurement sensors

A microelectromechanical system (MEMS) is an embedded system that integrates elec-
tronic and mechanical components at a very small scale to create a sensor.

Accelerometers measure force that is exerted on a mechanical part of the system, and
calculate acceleration using simply a = m/F . In some accelerometers, piezoelectric crys-
tals such as quartz take advantage of piezoelectric effect. A crystal is attached to a mass
and when the accelerometer moves, the mass squeezes the crystal and generates a tiny
electric voltage which is measured, as illustrated in Figure 2.3. Another approach uses ca-
pacitor plates that move and measures the difference in capacity. These electromechanical
parts can be arranged orthogonally to measure (x,y,z) components of acceleration. Since
accelerometers measure overall acceleration, in stillness they measure the gravitational
acceleration.

Gyroscopes measure angular velocity. MEMS gyroscopes use the Coriolis Effect to
measure the angular rate, as shown in Figure 2.4(a).

When a mass m is moving in direction v and angular rotation velocity Ω is applied, then
the mass will experience a force in the direction of the arrow as a result of the Coriolis
force. And the resulting physical displacement caused by the Coriolis force is then read
from a capacitive sensing structure.

8

Figure 2.3: Peizoelectric accelerometer, image courtesy
http://www.explainthatstuff.com/accelerometers.html

(a) Coriolis effect (b) Angular velocity applied

Figure 2.4: Image and text courtesy
http://electroiq.com/blog/2010/11/introduction-to-mems-gyroscopes/

Most available MEMS gyroscopes use a tuning fork configuration. Two masses oscillate
and move constantly in opposite directions (Figure 2.4(b)). When angular velocity is
applied, the Coriolis force on each mass also acts in opposite directions, which result in
capacitance change. This differential value in capacitance is proportional to the angular
velocity Ω and is then converted into output voltage for analog gyroscopes or LSBs for
digital gyroscopes.

When linear acceleration is applied to two masses, they move in the same direction. There-
fore, there will be no capacitance difference detected. The gyroscope will output zero-rate
level of voltage or LSBs, which shows that the MEMS gyroscopes are not sensitive to linear
acceleration such as tilt, shock, or vibration.

Magnetometers are a common measurement sensor that comes with accelerometers and
gyroscopes, it is a part of the used measurement sensor. They are used mostly to find
orientation compared to Earth’s magnetic poles. They are sensitive to presence of metal
objects. Since there’s usually a lot of metal objects in gyms, they would not give useful

9

http://www.explainthatstuff.com/accelerometers.html
http://electroiq.com/blog/2010/11/introduction-to-mems-gyroscopes/

values and their usage has been discarded.

2.3 Domain knowledge of exercise

Repetition of exercise is the motion that corresponds to the person’s movement starting at
the inital position, passing through all the motion that is required for the given exercise,
coming back to the initial position.

Across all the collected data there is one phenomena that can be observed: the repetitions
that are in the beginng or end of exercise set have a different shape than the repetitions
in the middle. This can be explained that the person has to gain some movement inertia
from the starting state of stillness. An example is illustrated in Figure 2.5. The user
often does some special movement before the exercise starts, such as laying down on the
ground before doing pushups, or jumping upwards to get hold of the pullup bar before
doing pull-ups. These facts can be used to help recognize when the exercise set starts or
stops, but also makes segmenting the first and last repetitions more difficult.

Acceleration plot

Repetition markers

Figure 2.5: Very simplified illustration of acceleration inertia. The acceleration is different
in the beginning repetition from the one following right after.

The movements subjected to recognition do not contain any sudden twitches or very quick
motion. The fastest exercise that I can think of is jumping with jumping rope, for which
the world record averages on 0.18 seconds per one jump5. Normal person will take at
least double of that time, which leaves us with about 0.4 sec per one exercise repetition.
The measurement frequency of the sensors should be therefore high enough to capture a
motion like this with enough of samples to perform recognition on. Setting measurement
frequency to 50Hz should provide 20 samples for 0.4 sec long repetition, which seems
reasonable.

The data has annotated reference segmentation marks that show where the repetition

5Calculatedfromvideoinhttps://www.youtube.com/watch?v=reJ45Z3HU9s

10

Calculated from video in https://www.youtube.com/watch?v=reJ45Z3HU9s

starts and ends. The data is also annotated into these 4 categories:

� OP - opening: movement that precedes the actual exercise motion, such as laying
down on the ground before doing pushups. It is defined as 50 samples (1 second)
before the first repetition.

� EX - exercise: the actual exercise motion

� CL - closing: movement that follows the actual exercise motion, such as getting up
from the ground after doing pushups. It is again defined as 50 samples (1 second)
after the last repetition.

� FM - free motion: all motion besides the previously mentioned.

2.4 Finding the best placement

It is not immediately apparent what is the best number of sensors and their placement
on the body to get the most appropriate data. If only one sensor is used there are various
exercises that would be impossible to recognize. Example: for the placement on the wrist
we can find exercise where the arm will not move much (leg raises) or similarly for ankle
(bicep curl ups). Therefore we can formulate an assumption that it is needed to use at
least 2 distinct sensors, supported by [4].

The positions that have been used for capturing data are marked in Figure 2.6. There
were 8 sensors available for capturing data, so I decided to use 2 for each arm, 1 for the
waist and the rest on one leg, because I wanted to find out the influence of (anti)symmetry
of placement.

The best positions for a given number of sensors will be selected based on the results of
the entire algorithm.

2.5 Similar problems

Many fitness trackers on the market today use pedometers as basic movement recognition.
Mechanical pedometers have been constructed as early as of 18th century: they work a bit
like pendulum clocks (the ones with a swinging bar powered by a slowly falling weight).
As the pendulum rocks back and forth, a kind of see-saw lever called an escapement flicks
up and down and a gear wheel inside the clock (which counts seconds) advances by one
position. So a pendulum clock is really a mechanism that counts seconds. The original
pedometers used a swinging pendulum to count steps and displayed the count with a
pointer moving round a dial (a bit like an analog watch). They are fixed on the waist

11

Figure 2.6: Placement of sensors on the body, large dots indicate the positions. Sometimes
the placement is 0-indexed or 1-indexed, depends on the context.

and every time a step is taken the pendulum swings to one side then back again, causing
a gear to advance one position and moving the hand around the dial.6

There is a patent for pedometers that use digital accelerometers7 that is based on a trivial
algorithm: it captures the data via AD converter, filters them, integrates the square of
values and if they pass a certain threshold it increments the steps count. This type of
thresholding is not precise at all and it will falsely label also other kinds of movement as
steps.

Unfortunately I found it difficult to find other approaches of pedometer implementation
because the internet is flooded with papers that compare the efficiency of all kinds of
commercially available pedometers without looking at how they actually work inside (which
I find as a very unrigorous approach). However, more accurate approaches can be based
on the same methods as the described algorithm for counting reps.

The signal processing that is required out of a recognition system like the one that I’d
like to create is similar to speech recognition. The algorithms that I am going to describe
in Chapter 4 are former state-of-the art for speech recognition applications. The difference
is that the input signal is much simpler, with lower frequencies, but it comes from more
sources (audio is 1D signal, while the motion recognition deals with multidimensional
signals).

6Explanation by http://www.explainthatstuff.com/how-pedometers-work.html
7https://www.google.com/patents/US7725289

12

http://www.explainthatstuff.com/how-pedometers-work.html
https://www.google.com/patents/US7725289

Chapter 3

Hardware

Two different types of hardware were used throughout this thesis. They will be referred
to as measurement hardware and implementation hardware. Both of these will be very
briefly described in this chapter.

3.1 Measurement hardware

. It consists of 8 devices that can be placed on the body that act as transmitters. They
measure the acceleration and gyroscopic data and send it wirelessly to a receiver. Be-
cause of problems of collecting data described in Chapter 7 two receivers had to be used
that combine the received data. Following are short descriptions of the transmitters and
receivers.

Transmitter

Input

� Barometer Freescale MPL3115

� 9-axis IMU sensor Bosch BMX055

� Configurative 4 pin connector Molex PicoBlade�

� 2x buttons

� Programming via TC2030-MCP-NL

Output

13

� 1x yellow LED

� 1x red LED

� 2.4 Ghz output of data in 32B packets at the frequencies 2420 - 2440 Mhz with
GFSK modulation

� Expanding 8 pin connector Molex PicoBlade�

Receiver

Input

� 3x SMA antennas 2.4 Ghz

� 1x temperature sensor

� 2x buttons

Output

� 1x yellow and 1x red LED for each transmitter

� 4x virtual USB-COM port - 3x receiver, 1x configuration

� 8 connectors for connecting 8 transmitters and their time sync

� 1x USB connector

Figure 3.1: Photograph of one receiver and 4 transmitters.

14

3.2 Implementation hardware

Implementation hardware consists from 2 embedded devices. Arduino Dues1 have been
used for implementation in embedded hardware. The boards have been upgraded by
accelerometer ADXL3352 (with no gyro unfortunately), bluetooth module HC05, SD card
reader and other components, such as LED lights, buttons or beeper. They are powered
by external battery via microUSB connector.

The two devices act as a slave and a master. The slave only trasmits measured data via
bluetooth to the master, which records all the data on SD card and evaluates the whole
recognition pipeline.

(a) Master (b) Slave

Figure 3.2: Photographs of Arduino prototypes

1https://www.arduino.cc/en/Main/ArduinoBoardDue
2https://www.sparkfun.com/datasheets/Components/SMD/adxl335.pdf

15

https://www.arduino.cc/en/Main/ArduinoBoardDue
https://www.sparkfun.com/datasheets/Components/SMD/adxl335.pdf

Chapter 4

Theory and analysis of algorithms

In this chapter I will introduce theoretical aspects of various algorithms used for signal
processing, their advantages and disadvantages.

These are definitions of various terminilogies that will be used:

1. Sequence is an ordered collection of values.

2. Input space I is space as defined by Equation 4.1

3. Input data are |I| sequences of the same length that may or may not contain repe-
titions.

4. Repetition is a motion described in Section 2.3, which are |I| sequences of the same
length that are a subset of the input data. Their beginning and end is marked in
input data by indices called segmentation marks.

4.1 Input data

Data that comes from the sensors are 12 bit signed values in range of V = 〈−2048; 2047〉, V ⊂
N. A single sensor produces 6 ordered sequences of the same length (3 x,y,z values for
accelerometer and 3 x,y,z for gyroscope). A selected combination of x sensors that are
located at different parts of the body creates an input space

I ⊆ V x·6. (4.1)

So for combination of two bracelets, x = 2 and the I ⊂ V 12.

16

4.2 Simple types of analysis of signal

In this section we will look at various simple approaches for signal analysis such as thresh-
olding, correlation and dynamic time warping. As it will be shown, these approaches are
not sufficient for finding the number of repetitions and more complex approaches are
needed to solve the recognition task.

4.2.1 Thresholding

A very simple way of counting reps is to use thresholding on the signal values. Such
a approach may be useful for finding an occurenece of a large acceleration difference,
for example tapping detection at the accelerometer. But after a single glance at the data
(see Figure 4.1) it is immediately apparent that this is not going to work in this case, since
the range of values of exercise can be very similar to those of free motion. This applies
also for the use use of integration and then thresholding (algorithm already described in
pedometer section 2.5 and illustrated in Figure 4.1).

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

cumsum(x)acc x

Figure 4.1: Thresholding of signal is not an appropriate method, even if using more
combinations or decision trees for multiple signals.

4.2.2 Correlation

In signal processing, cross-correlation is a measure of similarity of two series as a function
of the lag of one relative to the other. This is also known as a sliding dot product or
sliding inner-product. It is commonly used for searching a long signal for a shorter,
known feature.

For discrete functions f and g, the cross-correlation is defined as:

(f ? g)[n]
def
=

∞∑
m=−∞

f ∗[m] g[m+ n].

17

Cross correlation is not appropriate for signals that can be warped in time, as is appar-
ent in Figure 4.2 and therefore it is not a suitable method.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0 50 100 150 200

0 200 400 600 800 1000 1200 1400 1600 1800 2000

acc x

template x

cross correlated signals

Figure 4.2: Cross correlating signals with exercise template does not produce any local
maxima that have large difference to the rest of the signal and could be later thresholded.

4.2.3 Dynamic time warping

Dynamic time warping (DTW) is an algorithm for calculating similarity between two
temporal sequences which may vary in time or speed. In general, DTW is a method
that calculates an optimal match between two given sequences (e.g. time series) with
certain restrictions. The sequences are ”warped” non-linearly in the time dimension to
determine a measure of their similarity independent of certain non-linear variations in the
time dimension. This sequence alignment method is often used in time series classification.
DTW can be easily implemented as a dynamic programming described in Algorithm 4.2.3.

The distance function dist(a, b) can be arbitrarily defined, for signal alignment it is usually
square of euclidean norm dist(a, b) = ‖a − b‖2. Time complexity of DTW is O(tr) for
warping two sequences of length t and r. There are several ways that can be used to speed
up the alignment, such as limiting the size of the warping window (so that the sequences
do not contain large gaps, as shown in Figure 4.4) or reducing the input data.

One trouble is that DTW doesn’t align sequences locally - it aligns across the whole
sequence. If we’d like to use DTW to find a repetition as a close match to some exercise
template it is necessary to know the starting and ending positions of tested subsequence.

DTW is used in [24] as the main algorithm for evaluating repetitions. However, their
approach is not robust for more complicated motion, because they rely on threshold
segmentation of acceleration to determine the starting and ending positions of tested
subsequence. It is also neccessary to show the system when exercise started to occur,
which I wanted to avoid completely. However, if it is known how to segment the exercise

18

itself from the motion before and after it, the DTW can produce useful features that can
be used for a very simple classifier based on logisitic regression with good results [24].
The DTW is a method that will be used for improving accuracy of the recognition as
described in Section 4.4.

DTW distance is not the only feature to use in classification. A distance of the warped
path to the diagonal path has shown to be useful as well. For a warping window of size
t× r (which are the lengths of the warped sequences) a diagonal path is a line that goes
from point (1,1) to (t,r). The vertical (i) and horizontal (j) coordinates of the line can be
calculated as

i(x) = d(t/r)xe 1 ≤ x ≤ N (4.2)

j(x) = d(r/t)xe 1 ≤ x ≤M (4.3)

which ”pixelates” the line.

The horizontal distance dx is the sum of differences of the warped path’s horizontal coor-
dinates to the horizontal coordinates of the diagonal of the warping window, and vertical
distance dy is computed similarly.

Algorithm 1 Dynamic time warping

1: procedure DTWDistance(r: array [1..n], t: array [1..m])
2: DTW ← array [0..n, 0..m]
3: for i = 1 .. n do . Initialization
4: DTW [i, 0]←∞
5: end for
6: for j = 1 .. m do
7: DTW [0, j]←∞
8: end for
9: DTW [0, 0]← 0

10:

11: for i = 1 .. n do . Compute table
12: for i = 1 .. n do
13: cost← dist(r[i], t[j])
14: ins← DTW [i− 1, j]
15: del← DTW [i, j − 1]
16: match← DTW [i− 1, j − 1]
17: DTW [i, j]← cost+ min(ins, del,match)
18: end for
19: end for
20: return DTW [n,m]
21: end procedure

19

50 100 150 200 250

−700

−600

−500

−400

−300

−200

−100

0

Samples

A
m

p
lit

u
d

e

Original signals

signal 1

signal 2

50 100 150 200 250 300

−700

−600

−500

−400

−300

−200

−100

0

Samples
A

m
p

lit
u

d
e

Warped signals

signal 1

signal 2

Figure 4.3: A burpee aligned to its template using one accelaration axis.

−600−400−200 0

70

60

50

40

30

20

10

0

70

60

50

40

30

20

10

0

70

60

50

40

30

20

10

0

70

60

S
a
m

p
le

s

Amp

20 40 60 80 100 120 140 160

−600

−400

−200

Samples

A
m

p

Figure 4.4: Warping window with restricted size from the diagonal.

20

4.3 Hidden Markov models

As the previously described simple types of analysis of signal are insufficient to reach
the project goals, this section will introduce description of algorithms for training and
evaluating Hidden Markov Models (abbreviated as HMM). In essence it is a probabilistic
method which main aim is to infer what is the most probable hidden state of a system
based on observations that the system produces. HMMs have been used in variaty of
applications for recognition of patterns, such as gestures[8, 32], spoken words [15] or
handwritten characteres [23].

A class of HMM, discrete HMM is of particular interest, because of its good performance,
low complexity, and low computational demands that are a necessary requirement for
implementation in embedded devices. It is an appropriate method to use in the case of
motion recognition, because measured data from sensors can be used to infer what is the
most likely real state of a person performing exercise.

One important aspect of using discrete HMM is vector quantization that creates obser-
vation sequences based on which HMM infers hidden state. Vector quantization will be
introduced in the first subsection, and the description of HMM and its training will follow.

The training methods will be presented in general terms and later explained how they are
going to be used for the motion recognition. The content of this section is based on the
classic paper by [26] and thesis of [32, 22].

4.3.1 Vector quantization

A vector quantizer (VQ) is technically a method for compressing large input data spaces
into its finite disjunct subsets. These subsets are characterized by subset ”centers” called
prototype vectors or centroids. The set of prototype vectors is called a codebook. The
purpose of using vector quantization is in producing observation sequences that serve as
input for discrete hidden Markov models.

Contrary to compression the main concern is not a compression ratio, which is usually
high (the number of prototype vectors is typically low compared to the size of the input
space), but the data loss that is suffered by their application.

Formally, a vector quantizer is a function

Q : I → C, I ⊂ Rn, C ⊂ Rn, |C| = M (4.4)

where I is original input space and

C = {c1, . . . , cM} (4.5)

is called a codebook of size M . In practice a set of measurements X ⊂ I is available, and
quantization is done using this set.

21

Figure 4.5: Voronoi diagram with 4 disjunct regions based on protope vectors.

Such assignment of each vector to its prototype vector basically splits the input space into
disjunct regions Ri, and it is most interesting to know what is the index of assignment
i ∈ {1 . . .M} to region. One way of telling which region it is is by finding the closest
protype vector

V (x) = arg min
i
‖x− ci‖. (4.6)

Such separation can be visualized using Voronoi diagrams (Figure 4.5).

To evaluate how well is the space separated we can define a quantization error over one
vector x ∈ X

e(x|Q) = ‖x−Q(x)‖, (4.7)

and over the whole set of measurements X as

e(Q) = E[e(X|Q(X))] =

∫
X

‖x, Q(x)‖p(x)dx, (4.8)

where p(x) is probability distribution of x in set X.

The most widely used method for vector quantization is algorithm k-means (also referred
to as Lloyd’s algorithm [19]), which locally iteratively minimizes the sum of distances of
each vector from the disjunct subset x ∈ Ri to its prototype vector ci (or in other words
it minimizes the within-cluster sum of squares):

arg min
C

∑
ci∈C

∑
x∈X,x∈RV (x)

‖x− ci‖2 (4.9)

22

The algorithm consists of several steps:

1. Initialization
Find centroid seeds by random, or use a heuristic such as K-means++ [2].

2. Assignment step

R
(t)
i =

{
xp :

∥∥xp − ci
(t)
∥∥2 ≤ ∥∥xp − c

(t)
j

∥∥2, ∀i, j ∈ {1 . . .M}},
where xp is assigned exactly to one R

(t)
i , even if it could be assigned to more of

them.

3. Update step

ci
(t+1) =

1

|R(t)
i |

∑
xj∈R

(t)
i

xj

4. Termination
Terminate if the assignment to regions V (x) does not change or after specified
number of iterations.

Because of its iterative nature, K-means converges to local optimum and may not find the
global one, therefore it is recommended to re-run the algorithm several times and choose
the quantization with minimum error.

Finding the optimal solution to the k-means clustering problem for observations in d
dimensions is NP-hard in space d even for 2 clusters [1] and NP-hard for a general number
of clusters k even in the plane [20]. The run time of k-means is O(nkdi), where n is the
number of d-dimensional vectors, k the number of clusters and i the number of iterations
needed until convergence. Using centroid seeds by k-means++ can speed up the algorithm
and is that is O(log k)-competitive with the optimal clustering [2].

4.3.2 Discrete hidden Markov models

This section is an introduction to the theory of hidden Markov models. The practicalities
of training the models is described in next section.

Hidden Markov Models are an extension of ordinary discrete Markov models. A discrete
Markov model describes a system as a collection of distinct states that have quantified
probabilities of transitions from one state to another. The states can be indexed with
integers 1, 2, . . . N which refer to modelled phenomena. Let’s denote the current state of
the system in a time instant t as qt.

Discrete Markov models are independent on history of system, a fundamental property
called Markov Property which can be stated as

P (qt|qt−1) = P (qt|qt−1, qt−2, ..., q2, q1). (4.10)

23

The Markov model can be generalized in such a way that the probability of the current
state can depend on more than one previous state; it can depend on n previous states. In
this case we speak of nth-order Markov models, the model just described is discrete-time
first-order Markov model.

The state transition probabilities aij may be defined as

aij = P (qt = j|qt = i) i ∈ {1, . . . , N}, j ∈ {1, . . . , N} (4.11)

with following properties:

0 ≤ aij ≤ 1 ∀i, j ∈ {1, . . . , N}, (4.12)

N∑
j=1

aij = 1 ∀i, j ∈ {1, . . . , N} (4.13)

The probabilities aij can be represented by a square transition probability matrix of size
N . The initial state distribution is represented by probability vector

π =

P (q1 = 1)
P (q1 = 2)

...
P (q1 = N)

 (4.14)

that sums up to 1 as well. The model can be described by a pair of parameters λ = (A, π).

An extension to this Markov model is hidden Markov model. The extension is done in
such a way that set of observations O = (o1, o2, . . .) are are produced by each individual
state q according to an associated probability function. As a result of the extension,
hidden Markov models describe two-stage stochastic processes.

The first stage is an ordinary Markov model. It is this part that gave HMM its name
because now the states q are not observed ? they are ?hidden?. The second stage is
a collection of observation (or emission) probability distributions associated with each
individual (hidden) state, i.e., each state produces (emits, or generates) an observation
according to its distribution.

Consider a probabilistic function associated with the state i defined as:

bi(k) = P (ot = k|qt = i) (4.15)

where P (ot = k|qt = i) denotes the probability that at time t the state i generates
observation symbol k. The function bi(k) is called emission probability of state i with
observation k.

The important property of the associated densities is that they are assumed to be indepen-
dent of any previous state and generated observations, an extension of Markov property
(4.10) i.e.:

P (ot|qt = i) = P (ot|ot−1, ot−2, . . . , o1, qt, qt−1, . . . , q1) (4.16)

24

It needs to be mentioned that (4.15) is based on discrete probability densities. But simi-
larly it can be defined using continuous probability densities. They are usually modeled
using gaussian mixture models and this type of model is often referred to as GMM-HMM.

The observation set O can be quite large – in the case of exercise recognition it is
212 ·6 ·(# of used bracelets), which makes 4.8 ·106 different observations for two bracelets.
We would like to reduce it to a limited number of representations, since such an ineffable
large size would make the implementation of HMM unattainable.

This is where the vector quantization comes in. The codebook (4.5) can be used to limit
the observation set, by creating a quantized observation set O′, |O′| = M . Quantized
observation o′t is determined by finding closest prototype vector c to each observation ot
using (4.6) as

o′t = V (ot). (4.17)

Now the emission probabilities can be represented by emission matrix B, where

bik = P (o′t = k|qt = i). (4.18)

The index k represents the assignment to prototype vector ck from codebook C.

The rows of B satisfy similar restrictions as in matrix A:

0 ≤ bik ≤ 1 ∀i ∈ {1, . . . , N}, ∀k ∈ {1, . . . ,M}, (4.19)

M∑
k=1

bik = 1 ∀i ∈ {1, . . . , N}, ∀k ∈ {1, . . . ,M}. (4.20)

A fully defined discrete-time hidden Markov model is

λ = (A,B, π). (4.21)

An illustrative example of using HMM for weather prediction can be found in [32], an
example of urn and ball model in [26], or the occasionally dishonest casino in [16].

4.3.3 Structure of hidden Markov model

The structure of a Markov model is determined by the appearance of the matrix A as it
defines the probability of transition between states. Transitions with aij = 0 mean that
it is impossible to go from state i to j.

� The first type of structure is fully connected (Figure 4.6). It is a model in which it
is possible to go from every state to every other state in a single step. This structure

25

is described by a matrix A for which holds:

0 < aij < 1 (4.22)

1 ≤ i, j ≤ N (4.23)

Figure 4.6: Fully connected HMM model.

� The second type of structure is called left-to-right or linear (Figure 4.7), and
is based on assumption that the modelled system itself exhibits a chronological or
linear structure. Therefore, it does not make much sense to allow every possible
transition between states of the model. Typically these structures are used in the
field of automatic speech and handwriting recognition [26, 9], but are applied for
acclerometer based recognition with big successes as well [25, ?].

Figure 4.7: Left-to-right HMM model

The state transition matrix A of a left-to-right model have the following property:

aij = 0, j < i (4.24)

The transition probabilities from states with higher index to lower index are set to 0.
This implies that the model does not return to a state that has been already left.
The self transitions are used to allow the model to capture the variations of a
described pattern in time. This structure can be easily modified to allow skipping
of individual states, which is reflected by the following constraint for elements of A:

aij = 0, j > i+ ∆ (4.25)

26

where ∆ denotes the ”length” of the skip. Left-to-right models with such transitions
are called Bakis models. The Bakis model with ∆ = 1 such as the one depicted in
4.7 is the simplest one, and is also referred to as linear. The linear model has the
following transition matrix A for size N = 4:

A =

a11 a12 0 0
0 a22 a23 0
0 0 a33 a34
0 0 0 a44

 (4.26)

Need to say, that the Bakis models nowadays are very much used in practical appli-
cations for their simplicity and tractability. This model has less parameters, which
have to be estimated and calculated with, respectively, and it is also very flexible in
representing a pattern.

It should be noted in advance that the structure of hidden Markov models does not
influence (in any way) the algorithms that work with them, which is very convenient.

4.3.4 Training the model

The Baum-Welch algorithm represents one of the most commonly used optimization al-
gorithms for hidden Markov models. It is one of the variants of expectation-maximization
(EM) algorithms. This section contains the description of equations used in the the algo-
rithm. Detailed derivation of these equations can be found in [32, 22]. Please note that
this section serves only as a very quick review.

The Baum-Welch algorithm iteratively reestimates the parameters of a given model λ =
(A,B, π) on a certain training observation sequence O of length T such that at each
iteration for the reestimated model λ̂ holds

P (O|λ̂) ≥ P (O|λ). (4.27)

Consider following definitions:

� Forward variable αt(i), which represents how likely the given model λ describes the
partial observation sequence (o1, o2, . . . , ot) when the system is found in the state i
at the time instant t:

αt(i) = P (o1, o2, ..., ot, qt = i|λ) (4.28)

The forward variables can be calculated using a dynamic programming type of
algorithm, called Forward algorithm:

α1(i) = πibi(o1), 1 ≤ i ≤ N (4.29)

αt(i) =
N∑
j=1

αt−1(j)ajibi(ot), 1 ≤ i ≤ N, 2 ≤ t ≤ T (4.30)

27

� Backward variable βt(i), which represents how likely the Markov model λ describes
the partial observation sequence (ot+1, ot+2, . . . , oT) given the system is in the state
i at the time instant t:

βt(i) = P (ot+1, ot+2, ..., oT |qt = i, λ) (4.31)

The backward variables can be calculated similarly as forward variables using Back-
wards algorithm:

βT (i) = 1, 1 ≤ i ≤ N (4.32)

βt(i) =
N∑
j=1

βt+1(j)aijbj(ot+1), 1 ≤ i ≤ N, 2 ≤ t ≤ T (4.33)

βT (i) has been set arbitrarily to 1.

The algorithms presented involve computation with probabilities and this give rise to
a problem of representation of a significantly small values on the computer. This is
especially important in respect to using the algorithm in embedded device, since it is
possible to use only single floating point number representations with range of values 〈1.17·
10−38; 3.40 · 1038〉, though scaling concerns mostly the training Baum-Welch algorithm
which is performed offline on a normal computer, where double precision can be used with
range of values 〈2.22 · 10−308; 1.79 · 10308〉 (by IEEE 754 standard). The same argument
applies however.

This can be solved with scaling the variables, introducing scaled forward α̂ and backward
variables β̂ that can be calculated using scaled forward and backward algorithms. The
variables α̃ and β̃ correspond to local unscaled forward variables.

Scaled forward algorithm

1. Initialization

α̃1(i) = πibi(oi) 1 ≤ i ≤ N

c1 =
1∑N

k=1 α̃1(k)

α̂1(i) = c1α̃1(i) 1 ≤ i ≤ N

2. Induction

α̃t(i) =
N∑
j=1

α̂t−1(j)ajibi(ot) 1 ≤ i ≤ N, 2 ≤ t ≤ T

ct =
1∑N

k=1 α̃t(k)
2 ≤ t ≤ T

α̂t(i) = ctα̃t(i) 1 ≤ i ≤ N, 2 ≤ t ≤ T

28

Scaled backward algorithm

1. Initialization

β̃T (i) = 1 1 ≤ i ≤ N

β̂T (i) = cT β̃T (i) 1 ≤ i ≤ N

2. Induction

β̃t(i) =
N∑
j=1

β̂t+1(j)aijbj(ot+1) 1 ≤ i ≤ N, 2 ≤ t ≤ T

β̂t(i) = ctβ̃t(i) 1 ≤ i ≤ N, 2 ≤ t ≤ T

Finally, given all these formulas the pseudocode of the Baum-Welch algorithm can be
presented (for derivation please look at cited material):

1. Initialization

λ = (A,B, π) the initial model to be optimized

O the training sequence

tol the minimum value by which every model’s parameter has to change

plogP = 1 a

2. Optimization

logP = logP (O|λ) computed by the scaled forward algorithm

α̂t(i) computed during the previous step

β̂t(i) computed during by the scaled backward algorithm

âij =

∑T−1
t=1 α̂t(i)aijbj(ot+1)β̂t+1(j)∑T−1

t=1
α̂t(i)β̂t(i)

ct

reestimate Â

b̂t(ok) =

∑T
t:ot=ok

α̂t(i)β̂t(i)
ct∑T

t=1
α̂t(i)β̂t(i)

ct

reestimage B̂

π̂i =
α̂1(i)β̂1(i)∑N
i=1 α̂1(i)

reestimate π̂

λ̂ = (Â, B̂, π̂)

3. Termination
If |plogP−logP |

1+|plogP | ≥ tol OR max1≤i,j≤N |α̂ij − aij| ≥ tol OR max1≤i≤N,1≤k≤M |b̂i(k) −
bi(k)| ≥ tol OR max1≤i≤N |π̂i − πi| ≥ tol then continue optimization, otherwise
terminate.

29

4.3.5 Finding hidden states

The Viterbi algorithm is an efficient method of finding an optimal state sequence q∗ for
a particular observation sequence O, and model λ. It is another dynamic programming
type of algorithm very similar to the forward algorithm, and it uses the following criterion
to determine the optimality of a state sequence:

q∗ = arg max
q∈{1,2,...N}

P (O, q|λ) (4.34)

Consider the following iteration variable:

δt(i) = max
1≤q1,q2,...,qt−1≤N

P (o1, o2, . . . , ot, q1, q2, . . . , qt = i|λ) (4.35)

or in other words the probability of observing a partial sequence (o1, o2, . . . , ot) produced
along the state sequence (q1, q2, . . . , qt) such that the sequence ends in state i at the time
t. It can be verified by induction that the following holds for δt(i):

δt(i) = max
j∈{1,2,...N}

δt−1(j)ajibi(ot) (4.36)

Generally, the Viterbi algorithm iteratively computes δt(i) according to 4.36, and stops
after reaching δT (i). In order to find the optimal state sequence, it has to memorize the
argument that maximizes δt(i) for each state i and time t. Then, after the algorithm
finishes, by using backtracking the state sequence is reconstructed.

An alternative Viterbi algorithm is introduced for the same reasons as in previous section,
when the P (O, q∗|λ) becomes too small to be numerically represented on computers. The
alternative Viterbi algorithm applies logarithmic transform. Pseucode follows:

1. Preprocessing

π̃i = log(πi), 1 ≤ i ≤ N (4.37)

ãij = log(aij), 1 ≤ i, j ≤ N (4.38)

b̃i(t) = log(bi(t)), 1 ≤ i ≤ N, 1 ≤ t ≤ T (4.39)

2. Initialization

δ̃1(i) = p̃ii + b̃i(o1), 1 ≤ i ≤ N (4.40)

t = 2 (4.41)

3. Induction

ψt(i) = arg max
1≤j≤N

(
δ̃t−1(j) + ãji + b̃i(ot),

)
, 1 ≤ i ≤ N (4.42)

δ̃t(i) = δ̃t−1(ψt(i)) + ãψt(i)i + b̃i(ot), 1 ≤ i ≤ N (4.43)

30

4. Update
If t < T then t = t+ 1 and go to step 3. Otherwise go to step 5.

5. Sequence reconstruction

(a) Initialization

q∗t = arg max
1≤i≤N

δ̃T (i), 1 ≤ i ≤ N (4.44)

logP (O, q∗t |λ) = q̃T (q∗t), 1 ≤ i ≤ N (4.45)

(b) Backtracking

t = t− 1 (4.46)

q∗t = ψt+1(q
∗
t+1) (4.47)

(c) Termination
If t ≥ 1 go to step 5b. Otherwise, terminate and return log(P (O, q∗t |λ)) and q∗

The whole observation sequence O is not be available if the algorithm should run in
real time. This is when windowed alternative Viterbi algorithm can be introduced. The
basic idea is that the sequence O is separated to consecutive subsequences Θ1, . . . ,Θn of
constant length T , such that

⋂
i Θi = O. The alternative Viterbi runs normally on the

first Θ1. The next Θi>1 then use the variable δT (i) from previous run as the input to the
next run, such that

π̃i = δT (i), 1 ≤ i ≤ N (4.48)

The windowed approach does not compute optimal sequence and there are can be found
examples where this approach fails. Consider following simple example:

A =

0.9 0.1 0
0 0.9 0.1
0 0 1

B =

0.98 0.01 0.01
0.01 0.98 0.01
0.01 0.01 0.98

 π =

1
0
0

 (4.49)

λ = (A,B, π) O = (1, 1, 3, 3) (4.50)

It is a linear model that emits three observation symbols. The optimal sequence of hidden
states for observation O computed by non-windowing is q∗ = (1, 2, 3, 3).

However, with window size 2, the subsequences are Θ1 = (1, 1),Θ2 = (3, 3) and the
windowed approach yields sequence q̂ = (1, 1, 1, 1).

In practice this is not such a big problem for a large enough window, as shown later
in Section 5.4

31

4.4 Improving accuracy of HMM

One way of looking at the hidden Markov model is that it is a segmentation tool to parse
the input to segments called candidates that are either exercise or other free motion.
In practice, the HMM produces a lot of false positives (free motion). A classifier trained on
features extracted from the candidates can be later used to discern whether the candidate
is free motion or repetition of exercise.

The work of [24] shows that it is possible to extract simple statistical features of these
candidates (such as mean, standard deviation, maximum, minimum, etc.) that can be
used for classification with logistic regression.

Other approach that I tried is to use histogram of values in the repetition, with
bins spanning linearly or somewhat ”logarthmically”, with denser bins for smaller val-
ues around which the repetitions are mostly distributed and sparse bins for larger values.
The histogram was then normalized and served as input to neural network. This wasn’t
however successful and had very low success rate, so I don’t mention it later in evaluation.

It is important that the HMM is able produce candidates with high accuracy. The training
data has labels for the start and end of each repetition, an interval Ir. These can be
compared to the start and end positions of candidate, an interval Ic using error function

e(Ir, Ic) =
Ir ∩ Ic
Ir ∪ Ic

(4.51)

A candidate is considered a match if e(Ir, Ic) ≥ 0.9, and being close if e(Ir, Ic) ≥ 0.7.
Below the threshold of 0.7 it is considered as a false negative.

One important part of [24] is the use of an exercise template to which the candidate is
aligned to to calculate the features.

0 50 100 150 200 250 300 350 400

Observation

ACC bracelet 5

ACC bracelet 1

State: Open

State: Exercise

State: Close

Repetition

Figure 4.8: Segmentation from HMM results in false positives which should be discarded.

32

4.4.1 Exercise repetition template

Let’s try to find a repetition called template that would be the best representant of the
entire exercise for all people, from all available data. This would be useful for better
placing reference segmentation marks and for comparing exercise candidates with this
template to classify the movement.

One could think of trying to construct this template from multiple sources, from available
segmentation marks for repetitions. However, this segmentation is not always properly
done because of human error during the capture of the data. There can be occurence of
some outliers amongst the repetitions, but on average the reference segmentation marks
are good.

Using multiple sources would be similar to finding DNA multiple sequence alignment. One
way of searching for such a template would be running DTW multiple sequence alignment
and taking the final warped sequence. However, it is not feasible: given k sequences of
length n the time complexity is O(k22knk) if we use sum of pairs. Since time complexity
of dynamic programming approach is exponential in the number of sequences, heuristic
methods are usually used. Another problem is that the DNA alignment is used with a
small set of 4 symbols. The number of different values is in the order of 212 (size of the
input space, see 4.1) and is not practical at all. However, a perfect template is not needed,
just something that would be ”average enough” and not some outlier.

So this is the proposed method: let’s have a set of N repetitions called R, in which each
repetition is a set with dim(I) = x · 6 time series (Equation 4.1). We want to find a
repetition rT , a template, that is the most similar to all other in the set.

rT = arg min
x∈R

∑
ri∈R

sim(x, ri). (4.52)

How to create the similarity metric? It is not feasible to use multidimensional DTW
alignment for each time serie because of memory complexity. This can be reduced to
usage of only one axis for the alignment. Let’s take the one that has the highest variance
on average througout repetitions. It is not necessarily the most descriptive axis for the
given exercise, but it is good enough” for good alignment. For the contrast, axis with
low variance means there is a small number of local extremes on which DTW can make
a good match and lower the overall DTW distance.

4.4.2 Multi layer perceptron

Multi layer perceptron [27] (abberviated as MLP) is very well known classifier based on
neural network architecture. They are well described for example in [11] or in many
machine learning books, so I won’t go into great details about them. They have a high
expressivity, in fact they have been shown to be able to represent any kind of (non-
linear) functions from the input space to the output space with sufficient amount of

33

hidden neurons and arbitrary bounded and nonconstant activation function [14]. Training
of MLP (or neural networks in general) requires tuning of hyper parameters, such as
weight decay, learning rate or selecting appropriate gradient-descent algorithms (such as
Stochastic Gradient Descent[28], AdaGrad[7], RMSprop[31] or others). It is important to
evaluate accuracy of the network on a validation set while training to avoid overfitting.
L2 regularizers are often used to improve generalization.

4.4.3 Updating precision of segmentation marks

The segmentation marks cannot be obtained precisely, human error occurs during the
capture of the data and it is important for the proper training of the algorithm to have
good source of data. The mistakes are however not large, and we can update the segmen-
tation marks only locally. Once we have the template, we can iteratively move the the
starting and ending positions within a small range to find placement that minimizes DTW
distance to the template, and use these marks as the reference segmentation marks.

34

Chapter 5

Recognition system design

The process of recognition can be separated into these steps (modules):

Raw data acquisition

Preprocessing

Vector quantization

Segmentation

Rep counting

Classification

The steps of this pipeline will be described in each section in this chapter, using algorithms
introduced in Chapter 4.

5.1 Raw data acquisition

The raw data comes from 9-axis IMU sensor Bosch BMX0551 with acceleration range
±4g, gyroscope range ±250◦/s and 12bit resolution.

The raw values are not converted into their respective physical units because it would
require introducing floating numbers to this stage, which would be inefficient for memory

1Datasheet: http://www.mouser.com/ds/2/621/BST-BMX055-DS000-01v2-371988.pdf

35

and computation. If other sensor is used or with different range of values they must be
scaled accordingly (this was neccessary for Arduino implementation, as there is another
sensor that different acceleration range). The orientation of the axis is in Figure 5.1. This
orientation has been used on all 8 locations on the body (Figure 2.6), from the point of
view of the person that was wearing the sensors.

x

y z

Figure 5.1: Orientation of the axis of sensor.

5.2 Preprocessing

The data is preprocessed using window averaging. The window size is 8 time steps large.
This filter has a tiny delay of 0.16 seconds because of the filter starting up. This can be
completely ignored in the implementation in the embedded device.

Since the orientation of the sensors is fixed relative to the body, there is no need for
transformation of coordinates as in the work of [32]. Normalization is also not required,
since it is strictly specified what the range of used values is.

36

5.3 Vector quantization

Theoretical aspects of vector quantization have been discussed in Section 4.3.1. The
available data for vector quantization comes from the original input space, see 4.1.

The question is, what is the best input for the quantization? Or rather, which observations
from the sequence O = (o1, o2, ...on), oi ∈ I is the most appropriate to take to produce
quantized observations O′ = (o′1, o

′
2, ..., o

′
n))? Now one might be tempted to use more than

a single value from this multidimensional time-series, such as a windowed subsequence
(such that window of length w takes input (ot, ot+1, ..., ot+w) and produces one o′t). This
approach is however useless [17]. Thanks to my random browsing of scientific papers I
stumbled upon this information and I couldn’t believe it, so I decided to test this statement
and create another empirical evidence. However, it is not a rigorous approach without
supporting theoretical foundation, just sort of an intuition, so it should be taken with
some reserve.

The purpose of VQ is to produce observation sequences. They are the only input to
HMM, so it is important that the observations are well produced – in the sense that the
observations for exercise are quite similar to each other and distinct from observations
for the free motion. Also it is a good idea that the observations are versatile within the
sequence o′, because of the windowed Viterbi algorithm (discussed in Section 4.3.5).

Since the length of observation sequence O′ is varied and is about |O′| = 100 steps
(depending on exercise), it is useful to quantify them somehow. If we count the occurences
of each observation symbol and divide it by the length of the sequence we get a probability
of occurence of each symbol within given sequence. This allows to directly compare
observation sequences of different length. Let’s call this quantity q (I can’t think of a
better name, so just call it q). It logically holds that |q| = |C| (size of codebook).

Similar observation sequences O′1, O
′
2 will have a very similar q1, q2, and therefore the

distance ‖q1 − q2‖ will be very small, and vice versa for not so similar sequences. This
distance can be used to assess the quality of VQ. The average distances of q within exercise
observations should be smaller than distances of q to free motion observations to achieve
good separation.

As it can be seen in Figure 5.2, there are several ”squares” that correspond to similar
exercises as they have been done by the same person in one exercise set. The average
sum of all pairs of qi within the ”square” is by order of magnitude lower than to the
sum of distances to free motion observations, which supports expected properties for this
evaluation metric.

The types of input in Figure 5.2 are {single, window} and {no difference, difference}.

� Single, no difference means there is only one value (ot) to produce o′t,

� Window, no difference means two values (ot, ot+5) are used to produce single o′t,

37

Figure 5.2: Visualization of distance matrices for each type of VQ.

Position Input type Within exercise distance Distance to free motion
Top left single, no difference 34.5709 103.6928

Top right single, difference 23.8501 62.4549
Bottom left window, no difference 34.2475 97.8390

Bottom right window, difference 32.6048 103.7762

� Single, difference means value (ot+5 − ot) is used to produce single o′t,

� Window, difference means two values (ot, ot+5− ot) are used to produce single o′t.

The window length is chosen to w = 5 because it is sufficiently small window to capture
the variation in signal (5 timesteps correspond to 0.1 seconds).

As it can be seen from the calculated values, there is isn’t a large difference between the
types {single no difference, window no difference}, and it supports the surprising
argument of [17].

As the VQ type with the lowest exercise distance is single, difference it is the one
that will be used. It has also one other nice property: if the person is not moving, the
quantized observation will belong always to the same symbol, invariant to his physical
position.

38

5.4 Segmentation

The hidden Markov models from Section 4.3 are introduced. However the structures
described in 4.3.3 are not sufficient by themselves for task segmentation, because they
describe a whole sequence, not its parts.

Therefore two new models are introduced:

1. Simple model is based on the linear model. The last state does not finish in a
self-loop, but goes back to the first state. Example matrix A for 4 hidden states:

A =

a11 a12 0 0
0 a22 a23 0
0 0 a33 a34
ε 0 0 1− ε

 (5.1)

The model is trained as a linear model on the training observations which are
segmented into repetitions. The last transition is then changed to value ε, or 1− ε
respectively.

I can visualize the transition matrix for better grasping of the structure:

The blue cells in the grid are transitions from the original partial model, while the
gray cells are the transitions probabilities. White cells are transitions that are not
allowed (with zero value).

2. Composed model is based on the idea that the motion can be represented by 4
distinct parts (Section 2.3): free motion (FM), opening (OP), closing (CL) and
exercise (EX). The first three can be described by fully connected models and the
last by a linear model (or rather, the simple model, which is ”recycled”). These
partial models are trained separately for each observations corresponding to the
parts of the motion. Then they are joined together in the whole composed model.
The transitions between two partial models X and Y are following:

(a) full - full any state from X can go to any state of Y

(b) full - linear any state from X can go to the first state of Y

(c) linear - full last state from X can go to any state of Y

(d) linear - linear last state from X can go to the first state of Y

39

FM

OP

EX

CL

The composed model with corresponding transitions can be depicted graphically as
composed transition matrix A:

The emission matrices Bpartial are simply stacked vertically to create a composed
emission matrix B. The compose initial probability distribution is assumed to be 1
for the first state in partial model FM since movement always starts with free motion.

These models require learning newly introduced transitions.

1. The transition value ε in the simple model can be estimated from the average number
n̄ of occurences of the last hidden state on the repetition data. If we assume that
after each repetition there is again another one, or in other words the first hidden
state occurs again, the probability of transition ε̂ = 1/n̄.

2. The transitions in the composed model are more tricky. Basically they are transi-
tions between the whole partial models, so the models must be scaled down by some
value η to leave space for these new transitions so rows sum up to 1. Then this room
left by η can be (evenly) distributed amongst the transitions values. It is likely that
probability transitions of type full - full will not be distributed evenly, and it
would be appropriate to change them so that the model maximizes its likelihood
P (O|λ).

The value η can be estimated from annotated data of hidden sequences (Section 2.3).
It can be thought of as a transition probability between these partial models. If
hidden parts A and B produce on average nA and nB occurences then the transi-
tion η̂AB = nA

nB
.

These complex models can be again retrained using Baum-Welch to locally optimize them
for higher model likelihood.

The most appropriated structure is selected in next chapter. The hidden states correspond
to one of four stages of exercise: {start, middle, end, other}. Each stage has hidden

40

states that are associated with it. Once the sequence of hidden states succesfully passes
all first three stages consecutively, the timesteps at which the repetition started and ended
are used for segmentation.

The non-optimality of windowed Viterbi is mentioned in Section 4.3. This problem how-
ever is not so frequent when the codebook size is much larger and the observation se-
quences are highly varied (there is not a long repetition of the same observation symbol).
One can intuit it for a more complicated example as following: let’s have hidden states
qa, qb, qc with the same emission probabilities ba = bc, different bb, linear model going from
qa to qb to qc and initial state qa. When the observation symbols that are more probable
for distribution ba than bb occur, it is ”more difficult” to determine whether the correct
state is a or c for a windowed approach rather than for non-windowed. However, if the
distribution ba is very different to bc, the algorithm will calculate a transition to state qc
(through qb).

The exercise model is linear, and it is not important to find the exact hidden state, as long
as the hidden state corresponds to middle stage of evaluation. The states in the start

and end stages have very different emission probabilities than those for middle and the
mistake of non-optimal decoding generally does not occur.

Rep acceleration

Timesteps

10 20 30 40 50 60 70
0

5

10

15
Hidden states

Timesteps

S
ta

te
s

start

middle

end

Figure 5.3: Stages of hidden states for simple model of size N=16. Rep starts at time
t = 4 and ends at t = 72 for states 2 and 15.

41

5.5 Classification

The segmented sample is classified to either exercise or free motion. At first, samples
that are too short or too long are discarded immediately. Then, inspired by [24], dynamic
time warping is used to extract following features:

� mean, standard deviation, max, min on unwarped (original) signal for each axis

� dx, dy, warping distances as explained in Section 4.2.3 (Equation 4.2).

DTW is quite an expensive operation, therefore some reduction must be done in order
to deploy it on embedded system. Template with sampling frequency 50Hz contains too
much information and can be downsampled. A useful subsampling rate has been found
to be 2×, which is also very simple to implement.

Warping for each axis of measurement would multiply the running times linearly, and is
not necessary as it can be used only in one axis. The selected axis is one whose template
has the highest difference between maximum and minimum in the signal as it is usually
one to which the most informative warping can be done.

These features are then fed into fully connected MLP with one hidden layer of 16 neurons.
It classifies the sample in one forward pass, which is not a costly operation.

5.6 Rep counting

Once the segemented sample is classified as exercise, the repetition counter is incre-
mented.

42

Chapter 6

Implementation

6.1 Datalogger

I wrote data logging application implemented in .NET to record data and repetition an-
notations. The code uses multiple threads to receive and parse data for each transmitter.
GUI shows its current status, along with the training plan that the sportsman should
perform and a large button for annotation. The user interface is shown in Appendix A.1.

6.2 Offline training/evaluation

All of the algorithms described in the Chapter 4 have been implemented in Matlab,
along with data preprocessing, evaluation framework that distributes the training and
testing data, visualisation procedures, and data analysis. Gluing data from different
transmitters is implemented in a simple script in PHP. Efficient 3D DTW for experiments
is implemented in MEX (C) code, interfaced with Matlab.

Third-party code such as SVM, MLP, PCA or TSNE comes from standard or publicly
available Matlab packages without prohibitive license restrictions.

43

6.2.1 Directory tree

/

algorithms...List of algorithms
codebook ..Train codebook
hmm hiddenGenerate hidden state annotations
hmm observations.................Generate observations for given codebook
hmm collect............................Collect hidden and observation data
hmm model ..Train and test model
dtw ...Train and test classifier
exportmodelExport model for arduino

analysis ...Analysis of data and results
data

raw..Data from sensors
united......................................Merged together from receivers
exerciseProperly segmented data with labels

eval..Evaluation framework
helpers ...Common functions
preprocess.......................................Preprocessing from raw data
results

visualisations ...Show graphs

6.2.2 Data format

Processed data is stored in /data/exercise/exercise name /labeled/. The CSV files
have 49 columns, with 6× 8 groups. Last column is the repetition annotation (A), where
”1” is a start of repetition and ”2” is the end (both inclusive), while ”0” is no label.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 A

acc gyr acc gyr acc gyr acc gyr acc gyr acc gyr acc gyr acc gyr

6.3 Embedded device

Embedded devices implement only model evaluation, not its training. The C++ imple-
mentation is an efficient transcription of Matlab code for preprocessing, alternative Viterbi
algorithm and candidate classifier. It is optimized to use the least amount of memory as
possible. Matlab is used to generate the entire model with all necessary matrices and
other settings and dumps them into a binary file. This file is read from SD card on the
embedded device.

The program loads automatically one type of exercise and after starting the recognition

44

by pressing a button beeper buzzes after recognizing one repetition.

Since this was not a required part of this thesis I will not get involved into too many
details about the implementation, but I am open for requests for demonstration :-)

45

Chapter 7

Evaluation

7.1 Dataset

The selected exercises E, |E| = 7 are:

1. burpees (BUR) - http://michal.sustr.sk/exercise/bur.mp4

2. sit-ups (SIT) - http://michal.sustr.sk/exercise/situps.mp4

3. squats (SQT) - http://michal.sustr.sk/exercise/sqt.mp4

4. pushups (PUP) - http://michal.sustr.sk/exercise/pup.mp4

5. jumping jacks (JCK) - http://michal.sustr.sk/exercise/jack.mp4

6. raising arms (ARM) - http://michal.sustr.sk/exercise/armup.mp4

7. uppercuts (CUP) - http://michal.sustr.sk/exercise/cuts.mp4

Their example inputs are visualized in Appendix B.

I decided to use these because they are symmetrical unconstrained exercises with large
range of movement that most people can do easily. The symetricity is useful for finding
optimal locations of sensors, since it will not favor one half of the body over the other.
It is more difficult to count number of repetitions for unconstrained exercises than for
constrained exercises (which are mostly performed on machines in the gym, such as leg
press, butterfly, but also bench press or bicep curls) because they have limited scope of
motion. The constraint causes the measured data to be much more smooth and easier
to evaluate and is not as spread out (see Figure 7.1). The idea is that if algorithms
are successful in counting of unconstrained exercises, they will be successful also in the
constrained case, since it’s a simper task.

46

http://michal.sustr.sk/exercise/bur.mp4
http://michal.sustr.sk/exercise/situps.mp4
http://michal.sustr.sk/exercise/sqt.mp4
http://michal.sustr.sk/exercise/pup.mp4
http://michal.sustr.sk/exercise/jack.mp4
http://michal.sustr.sk/exercise/armup.mp4
http://michal.sustr.sk/exercise/cuts.mp4

In machine learning tasks it is always highly recommended to visualize your data before
doing any work with them. This data is quite high dimensional and techniques for di-
mensionality reduction such as PCA or TSNE can be used for approximate visualization,
see Figure 7.1.

1

2

3

1

2

3

Figure 7.1: Visualisation of acceleration values of exercise raising hands (ARM) using
PCA (top) and TSNE (bottom). The different colors represent the stages of movement
in time (first, second and third 1/3). The motion is highly varied throughout the differ-
ent stages and it cannot be easily clustered in a small number of clusters whose index
would correspond to the progression of motion through time. This is a support for using
clustering approach over the entire dataset using methods such as k-means.

47

The whole dataset consists of exercise from 10 different people and was divided into
training, validation and testing set (which have been taken as IID samples from the whole
dataset). The model parameter selection results are computed on the validation set, and
overall accuracy on the testing set.

training test
70% 10% 20%

val

There are following numbers of captured data. The rep sets consists of multiple repetitions
in a row with varying length, or only one repetition.

Exercise Rep sets Reps in total Training Testing Validation
BUR 54 135 90 27 18
SIT 40 152 110 24 18
SQT 36 169 118 33 18
PUP 77 172 120 32 20
JCK 50 252 176 40 36
ARM 77 386 270 76 40
CUP 25 115 80 23 12

A lot of the captured data had to be thrown away, because of the acquisition troubles.

To be able to evaluate the accuracy of the classification module, I collected 2 hours of
random movement that does not contain any of the exercise motion. This data is separated
into multiple (170) data samples for practical reasons.

48

7.2 Experimental setup

A sportsman is asked to move under supervision of an instructor. The sportsman performs
sets of repetitions of exercises, as well as single repetitions. Instructor takes segmentation
marks that serve as reference marks to separate repetitions. As a sportsman moves, the
person in charge of collecting data presses a button in a measuring application after he does
every single repetition (how the app looks like is in Appendix A.1). The measuring app
puts all the data in separate ”raw” files that are later processed on PC. This postprocessing
uses timestamps to glue the data from all sensors appropriatly together.

Because of human error in measurement the segmentation marks are updated to be more
precise. More about this update is written in 4.4.3.

Acquisition troubles

The device transmitting data (Section 3.1) was transmitting at frequencies 2420 - 2440
MHz. The transmitting power for these devices is quite low, and if the person turned
in such a way that his body shadowed the signal from trasmitter to receiver there was
a severe packet loss, up to 40%. Human body contains mostly water and it has a high
attenuation of these frequencies [18]. This loss happened for the most important data. A
”hack” that I used for this trouble was in introducing two receivers placed on opposite
sides of the sportsman. I took both of their data and merged it together. The packet loss
was reduced to 2%, which is acceptable. Figure 7.2 illustrates the setup.

Figure 7.2: Illustration of experimental setup that uses two receivers to combine received
data from transmitters.

49

7.3 Parameters of the model

The recognition model requires handful of parameters, which are combinatorially explored
to find the most suitable values for a preselected position of sensors. Evaluating the models
across all the combinations of positions and parameters would take too long, so only one
position combination is used to find the most appropriate parameters. Models with the
same parameters are then trained for all combinations of positions. The selected positions
are X = (1, 5) (left wrist and right ankle), because they are the largest extensions of the
body and will provide good data across all the exercises (contrary to selecting wrist and
bicep on the same arm, for example). This parameter training was done on a validation
set which was taken apart from the training set as 15% of the data. Cross validation
would be too computationally expensive in this case so it wasn’t used.

Codebook

The training of recognition model is done globally, not for each individual. There was not
enough data to do this for each person individually. In work of gesture recognition [32]
two types of codebooks have been investigated: global for all gestures and individual one.
The individual codebooks had higher accuracy. A codebook of 128 prototype vectors and
12 input axis takes 6kB while available SD card space is 8GB. Since storing a different
codebook for each exercise is not problematic a global codebook is not investigated.

The chosen sizes are ”nice” numbers - one of M = {64, 128, 256}. The larger the codebook
is, the longer it takes for finding the prototype vectors and encoding the observations, so
a smaller codebook is preferred.

Input data

Another parameter for the codebook creation is what input data should be used. Is it
enough to use acceleration, or do we need gyroscope data as well? The possibilites are
I = {acc, gyr, accgyr}.

HMM structure

Section 4.3.3 shows two structures S = {simple, composed} that can be used for seg-
mentation. These two types of models will be evaluated with different sizes of hidden
states N = {8, 16, 20}. Higher number of states is not appropriate, because linear HMM
requires that the number of time steps of one repetition is at least equal to the number
of the hidden states, which would violate the minimum time of exercise constraint (Sec-
tion 2.3). Also, higher number of states creates a more complex model, which generally

50

tends to approximate the training data better while worsening generalization for the test
data. (Think of regresssion problem where we fit data that does not comply with IID1

condition of PAC learning with higher order polynomial instead of using a polynomial of
lower degree, which will be less biased than the more complex model).

Viterbi vs alternative Viterbi

Alternative Viterbi (Section 4.3.5) brings imprecision of finding hidden states. The perfor-
mance of the models is evaluated using both of these algorithms asD = {viterbi, alternative}.

Classification parameters

The segmented candidates acquired from the most appropriate HMM model with their
annotations (based on evaluation of error from Equation 4.51) are used to train the
candidate classifier. Calculated features are separated using MLP with one hidden layer.

7.4 Results

The recognition system can be basically divided into two components for which results
should be examined. One is the segmentation module based on HMM, and the other is
the classification module. The most interesting result of HMM is the false negative rate
(miss rate)

FNR =
false negative

of positive samples
. (7.1)

This is because once HMM misclassifies repetition as free motion, the next-stage classifier
cannot reverse this ”damage”. In the next section best model parameters are selected as
minimization of FNR.

The best placement on the body is examined using the results of the entire recognition
model using false omission rate, because we want to minimize missing a repetition.

FOR =
false negative

of negative test outcomes
. (7.2)

The results are in the form of tensor of size |E|× |M |× |N |× |D|× |I|× |H| = 7×3×3×
2× 3× 2 and 756 values, which is difficult to outline in a table, so following extractions
are presented. The whole results can be viewed on attached CD.

1IID - Independent and identically distributed random variables

51

7.4.1 Best model parameters

At first, the parameters that minimize the FNR for each exercise are selected:

Exercise FNR M N D I H
BUR 0.06 256 8 viterbi accgyr composed
SIT 0.02 128 20 viterbi accgyr single
SQT 0.01 128 8 viterbi accgyr single
PUP 0.00 128 16 viterbi accgyr single
JCK 0.00 64 8 viterbi accgyr single
ARM 0.00 64 16 alternative accgyr single
CUP 0.06 128 16 viterbi gyr composed

It can be seen that except for uppercuts (CUP) all other exercises use codebook derived
from accgyr, which is a good sanity check. Single model performs better for simpler
exercises, and the composed model for more complicated ones (burppes, uppercuts). For
implementation in embedded device only alternative Viterbi can be used. Fixating
these fields yields following results:

Exercise FNR M N D I H
BUR 0.15 256 8 alternative accgyr single
SIT 0.05 256 16 alternative accgyr single
SQT 0.01 128 16 alternative accgyr single
PUP 0.02 64 16 alternative accgyr single
JCK 0.01 64 20 alternative accgyr single
ARM 0.00 64 16 alternative accgyr single
CUP 0.13 128 20 alternative accgyr single

A setting that minimizes average FNR error across the parameters M and N can be found
across all the combinations:

N
8 16 20

64 0.0710 0.0353 0.0383
M 128 0.0567 0.0264 0.0275

256 0.0619 0.0370 0.0346

Table 7.1: Average FNR values for all exercises given N and M.

52

That setting is M=128, N=16, with these FNR results across all the exercises:

Exercise FNR M N D I H
BUR 0.23 128 16 alternative accgyr single
SIT 0.10 128 16 alternative accgyr single
SQT 0.01 128 16 alternative accgyr single
PUP 0.03 128 16 alternative accgyr single
JCK 0.03 128 16 alternative accgyr single
ARM 0.03 128 16 alternative accgyr single
CUP 0.18 128 16 alternative accgyr single

It should be noted that it is possible to use different models for each exercise - the
implementation in embedded device could switch between the parameters. The purpose
of this parameter selection is to have a single setting that can be used to find the best
placement of sensors.

There is also an underlying problem of overfitting - the movements BUR and CUP are
much more complex than the others, and more complex model with a higher number of
parameters will tend to fit it better. The testing data is however biased – it comes from
the same people that it has been trained on. Better models could be accomplished only
by having a larger amount of training data to match the model complexity.

7.4.2 Placement on the body

Using settings discovered in previous section:
M = 128, N = 16, D = alternative, I = accgyr,H = single
I ran evaluations for each combination of 1, 2, 3 or 8 bracelets (together 93 different
combinations).

In the table below I present the results based on each exercise - along with sanity check
of using 8 bracelets. To see where each sensor is located you can look again at Figure 2.6.

Exercise 1 bracelet 2 bracelets 3 bracelets 3 bracelets and 8 bracelets
BUR 0.155 — 0 0.113 — 0x1 0.093 — 0x2x4 0.093 — 0x2x4
SIT 0.094 — 1 0.039 — 3x4 0.023 — 0x2x7 0.023 — 0x2x7
SQT 0.035 — 6 0.007 — 0x6 0.007 — 5x6x7 0.007 — 0x5x6
PUP 0.085 — 1 0.008 — 2x7 0.000 — 1x2x3 0.000 — 0x1x2x3x4x5x6x7
JCK 0.018 — 4 0.005 — 0x6 0.000 — 0x1x7 0.000 — 0x1x7
ARM 0.012 — 3 0.003 — 1x3 0.000 — 0x2x3 0.000 — 0x2x3
CUP 0.148 — 6 0.111 — 0x7 0.120 — 0x1x6 0.111 — 0x1x6

The results for 1,2,3 bracelets seem in general reasonable - they are in placements where

53

the largest range of motion is exerted:

� BUR: Except for combination 1x2, they are placed in arms and legs

� SIT: Maybe a bit surprising is 4x5, because the legs don’t move that much in sit-ups

� SQT: The tighs move the most, which works well

� PUP: Recognition at biceps is better than at wrists, and the best result comes from
biceps and wrist.

� JCK: Again uses mostly the largest extensions.

� ARM: Arm raises uses only arms, not legs - sanity check.

� CUP: Again uses mostly the largest extensions.

Maybe a bit disappointingly using all of the sensors doesn’t help very much - the under-
lying reason is probably that it is difficult to do vector quantization effectively in such a
large dimensionality - 8 sensors provide 48-D data. This might be also the reason why
CUP 0x1x6 has larger FN than CUP 0x7, a strange rise of error while having more data
to learn from.

Taking median value over all exercises given number of bracelets yields following results
for placing the bracelets:

best combination for 1 bracelet: 2, FN=0.09

best combination for 2 bracelets: 1x5, FN=0.03

best combination for 3 bracelets: 1x2x7, FN=0.02

54

7.4.3 Accuracy of counting repetitions

The final stage of the algorithm, after the segmentation, is classification. The evaluation
is done on the set of data containing repetitions of given exercise and on free motion
data. Using features from Section 5.5, I’ve come to the following results for each best
combination of exercises. Since classification is done using MLP, it is important to use
validation set to avoid overfitting. The high accuracy results are due to the fact that the
data is almost linearly separable because of the use of similarity with exercise template.
The accuracy bottleneck lies in proper segmentation.

Exercise 1 bracelet 2 bracelets 3 bracelets
Validation Testing Validation Testing Validation Testing

BUR 0.78 0.72 0.83 0.75 0.90 0.82
SIT 0.85 0.82 0.95 0.85 0.97 0.91
SQT 0.96 0.95 0.99 0.92 1.00 0.95
PUP 0.92 0.90 0.99 0.96 1.00 0.92
JCK 0.98 0.95 0.99 0.95 1.00 0.94
ARM 0.98 0.95 0.99 0.93 1.00 0.99
CUP 0.80 0.75 0.85 0.81 0.88 0.85

Table 7.2: Accuracy results for given number of bracelets.

55

Chapter 8

Conclusions

In this thesis I have succesfully applied machine learning algorithms to the task of count-
ing exercise repetitions from body worn sensors. The input data comes from 8 sensors
placed on different locations (Figure 2.6) that measure acceleration and angular velocity
with 50Hz frequency. The main algorithm modules are based on discrete hidden markov
models (for segmentation) and dynamic time warping and multi layer perceptrons (for
classification of repetition). I found the best placement for the sensors based on their
numbers to be located at:

� 1 sensor: left bicep,

� 2 sensors: left wrist and ankle,

� 3 sensors: left wrist, left bicep and right thigh.

I have managed to create models that can be run efficiently in real time on embedded
devices and I made a simple implementation that can run on Arduino Due prototype.

The accuracy of the recognition is exercise dependent and bracelet-dependent and is
summarized in Table 7.2. The more bracelets are used, the higher is the accuracy, and
it moves in interval of 78% to 98%. The more complicated the motion is, the lower is
the accuracy. More complicated motion exhibits more ways of how it can be performed,
which is a property that left-to-right hidden markov models have difficulty to capture.

I have not compared my method to other works, because of lack of experimental dataset.
Because of this I make the dataset I have used to be publicly available at http://michal.
sustr.sk/exercise/ along with this thesis.

Another approach for recognition can use end-to-end neural networks architecture based
on LSTM [13] which is the basis for many state of the art methods for speech recognition
[12] or more complex tasks such as image captioning [33]. However this approach requires
that the training set is much larger, and the training .

56

http://michal.sustr.sk/exercise/
http://michal.sustr.sk/exercise/

An obvious extension of this work could be in recognizing the movement itself, not just
counting repetitions. This might however be quite difficult to implement in embedded
device with low power consumption, such I had at my disposition. I had to deal several
times with optimizing the memory usage, especially with buffers, and the recognition is
quite on the edge of the capabilities of my hardware.

57

Bibliography

[1] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat, Np-hardness of
euclidean sum-of-squares clustering, Machine learning 75 (2009), no. 2, 245–248.

[2] David Arthur and Sergei Vassilvitskii, k-means++: The advantages of careful seeding,
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035.

[3] Media Anugerah Ayu, Siti Aisyah Ismail, Ahmad Faridi Abdul Matin, and Teddy
Mantoro, A comparison study of classifier algorithms for mobile-phone’s accelerom-
eter based activity recognition, Procedia Engineering 41 (2012), 224–229.

[4] Ling Bao and Stephen S Intille, Activity recognition from user-annotated acceleration
data, Pervasive computing, Springer, 2004, pp. 1–17.

[5] Tomas Brezmes, Juan-Luis Gorricho, and Josep Cotrina, Activity recognition from
accelerometer data on a mobile phone, Distributed computing, artificial intelligence,
bioinformatics, soft computing, and ambient assisted living, Springer, 2009, pp. 796–
799.

[6] X. Chu, W. Ouyang, H. Li, and X. Wang, Structured Feature Learning for Pose
Estimation, ArXiv e-prints (2016).

[7] John Duchi, Elad Hazan, and Yoram Singer, Adaptive subgradient methods for online
learning and stochastic optimization, The Journal of Machine Learning Research 12
(2011), 2121–2159.

[8] Mahmoud Elmezain, Ayoub Al-Hamadi, Jörg Appenrodt, and Bernd Michaelis, A
hidden markov model-based continuous gesture recognition system for hand motion
trajectory, Pattern Recognition, 2008. ICPR 2008. 19th International Conference on,
IEEE, 2008, pp. 1–4.

[9] Gernot A Fink, Markov models for pattern recognition: from theory to applications,
Springer Science & Business Media, 2014.

[10] Norbert Győrb́ıró, Ákos Fábián, and Gergely Hományi, An activity recognition sys-
tem for mobile phones, Mobile Networks and Applications 14 (2009), no. 1, 82–91.

[11] Simon S Haykin, Simon S Haykin, Simon S Haykin, and Simon S Haykin, Neural
networks and learning machines, vol. 3, Pearson Education Upper Saddle River,
2009.

58

[12] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath,
et al., Deep neural networks for acoustic modeling in speech recognition: The shared
views of four research groups, Signal Processing Magazine, IEEE 29 (2012), no. 6,
82–97.

[13] Sepp Hochreiter and Jürgen Schmidhuber, Long short-term memory, Neural compu-
tation 9 (1997), no. 8, 1735–1780.

[14] Kurt Hornik, Approximation capabilities of multilayer feedforward networks, Neural
networks 4 (1991), no. 2, 251–257.

[15] Xuedong D Huang, Yasuo Ariki, and Mervyn A Jack, Hidden markov models for
speech recognition, vol. 2004, Edinburgh university press Edinburgh, 1990.

[16] Daniel Huson, Algorithms in bioinformatics i, 2008.

[17] Eamonn Keogh and Jessica Lin, Clustering of time-series subsequences is mean-
ingless: implications for previous and future research, Knowledge and information
systems 8 (2005), no. 2, 154–177.

[18] Jaime Lloret, Sandra Sendra, Miguel Ardid, and Joel JPC Rodrigues, Underwater
wireless sensor communications in the 2.4 ghz ism frequency band, Sensors 12 (2012),
no. 4, 4237–4264.

[19] Stuart P Lloyd, Least squares quantization in pcm, Information Theory, IEEE Trans-
actions on 28 (1982), no. 2, 129–137.

[20] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan, The planar k-
means problem is np-hard, WALCOM: Algorithms and Computation, Springer, 2009,
pp. 274–285.

[21] Abdelkrim Nemra, Luis M. Bergasa, Elena López, Rafael Barea, Alejandro Gómez,
and Álvaro Saltos, Robot 2015: Second iberian robotics conference: Advances in
robotics, volume 1, ch. Robust Visual Simultaneous Localization and Mapping for
MAV Using Smooth Variable Structure Filter, pp. 557–569, Springer International
Publishing, Cham, 2016.

[22] Mikael Nilsson and Marcus Ejnarsson, Speech recognition using hidden markov model,
Department of Telecommunications and Speech Processing, Blekinge Institute of
Technology (2002).

[23] Hee-Seon Park and Seong-Whan Lee, Off-line recognition of large-set handwritten
characters with multiple hidden markov models, Pattern Recognition 29 (1996), no. 2,
231–244.

[24] Igor Pernek, KarinAnna Hummel, and Peter Kokol, Exercise repetition detection for
resistance training based on smartphones, Personal and Ubiquitous Computing 17
(2013), no. 4, 771–782 (English).

[25] Zoltán Prekopcsák, Accelerometer based real-time gesture recognition, (2008).

59

[26] Lawrence R Rabiner, A tutorial on hidden markov models and selected applications
in speech recognition, Proceedings of the IEEE 77 (1989), no. 2, 257–286.

[27] Frank Rosenblatt, Principles of neurodynamics. perceptrons and the theory of brain
mechanisms, Tech. report, DTIC Document, 1961.

[28] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams, Learning represen-
tations by back-propagating errors, Cognitive modeling 5 (1988), no. 3, 1.

[29] Lin Sun, Daqing Zhang, Bin Li, Bin Guo, and Shijian Li, Activity recognition on
an accelerometer embedded mobile phone with varying positions and orientations,
Ubiquitous intelligence and computing, Springer, 2010, pp. 548–562.

[30] Emmanuel Munguia Tapia, Stephen S Intille, William Haskell, Kent Larson, Julie
Wright, Abby King, and Robert Friedman, Real-time recognition of physical activities
and their intensities using wireless accelerometers and a heart rate monitor, Wearable
Computers, 2007 11th IEEE International Symposium on, IEEE, 2007, pp. 37–40.

[31] Tijmen Tieleman and Geoffrey Hinton, Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude, COURSERA: Neural Networks for Machine
Learning 4 (2012), 2.

[32] Tomas Tunys, Gestures detection and nfc for android os.

[33] Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville, Ruslan Salakhutdinov, Richard
Zemel, and Yoshua Bengio, Show, attend and tell: Neural image caption generation
with visual attention, arXiv preprint arXiv:1502.03044 (2015).

[34] Liyang Zhu, Pei Zhou, Anle Pan, Jian Guo, Wei Sun, Xiaohe Chen, Zhen Liu, and
Lirong Wang, A survey of fall detection algorithm for elderly health monitoring, Big
Data and Cloud Computing (BDCloud), 2015 IEEE Fifth International Conference
on, IEEE, 2015, pp. 270–274.

60

Appendix A

Software

A.1 Collecting data program

Figure A.1: Datalogger application with labels written in Slovak.

61

Appendix B

Visualisation of exercises
(acceleration values)

Only acceleration values are shown. It would take too much space with gyroscopic data.
RGB plots correspond to x,y,z coordinates. All values are normalized into 〈0; 1〉 range to
demonstrate the shape of the acceleration data.

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1
left wrist

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1
left biceps

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1
right biceps

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1
right wrist

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1
left ankle

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1
left shin

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1
left thigh

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1
waist

Figure B.1: Burpees

62

0 50 100 150
0

0.5

1
left wrist

0 50 100 150
0

0.5

1
left biceps

0 50 100 150
0

0.5

1
right biceps

0 50 100 150
0

0.5

1
right wrist

0 50 100 150
0

0.5

1
left ankle

0 50 100 150
0

0.5

1
left shin

0 50 100 150
0

0.5

1
left thigh

0 50 100 150
0

0.5

1
waist

Figure B.2: Sit-ups

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
left wrist

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
left biceps

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
right biceps

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
right wrist

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
left ankle

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
left shin

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
left thigh

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
waist

Figure B.3: Squats

63

0 5 10 15 20 25 30 35 40
0

0.5

1
left wrist

0 5 10 15 20 25 30 35 40
0

0.5

1
left biceps

0 5 10 15 20 25 30 35 40
0

0.5

1
right biceps

0 5 10 15 20 25 30 35 40
0

0.5

1
right wrist

0 5 10 15 20 25 30 35 40
0

0.5

1
left ankle

0 5 10 15 20 25 30 35 40
0

0.5

1
left shin

0 5 10 15 20 25 30 35 40
0

0.5

1
left thigh

0 5 10 15 20 25 30 35 40
0

0.5

1
waist

Figure B.4: Pushups

0 10 20 30 40 50 60 70 80
0

0.5

1
left wrist

0 10 20 30 40 50 60 70 80
0

0.5

1
left biceps

0 10 20 30 40 50 60 70 80
0

0.5

1
right biceps

0 10 20 30 40 50 60 70 80
0

0.5

1
right wrist

0 10 20 30 40 50 60 70 80
0

0.5

1
left ankle

0 10 20 30 40 50 60 70 80
0

0.5

1
left shin

0 10 20 30 40 50 60 70 80
0

0.5

1
left thigh

0 10 20 30 40 50 60 70 80
0

0.5

1
waist

Figure B.5: Jumping jacks

64

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
left wrist

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
left biceps

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
right biceps

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
right wrist

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
left ankle

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
left shin

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
left thigh

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
waist

Figure B.6: Arm raises

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
left wrist

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
left biceps

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
right biceps

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
right wrist

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
left ankle

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
left shin

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
left thigh

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
waist

Figure B.7: Uppercuts

65

Appendix C

Learning curves

HMM EM iteration learning curves for placement 1x5 (wrist and ankle)

0 10 20 30 40 50 60
−6

−5.8

−5.6

−5.4

−5.2

−5

−4.8

−4.6

−4.4

−4.2
x 10

4

Training Iteration

L
o
g
a
ri
th

m
ic

 P
(O

1
,O

2
,.
..
,O

N
|m

o
d
e
l)

BUR

Figure C.1: Burpees

66

0 10 20 30 40 50 60
−5.2

−5

−4.8

−4.6

−4.4

−4.2

−4

−3.8

−3.6

−3.4
x 10

4

Training Iteration

L
o
g
a
ri
th

m
ic

 P
(O

1
,O

2
,.
..
,O

N
|m

o
d
e
l)

SIT

Figure C.2: Sit-ups

0 10 20 30 40 50 60
−3.4

−3.3

−3.2

−3.1

−3

−2.9

−2.8

−2.7

−2.6

−2.5

−2.4
x 10

4

Training Iteration

L
o
g
a
ri
th

m
ic

 P
(O

1
,O

2
,.
..
,O

N
|m

o
d
e
l)

SQT

Figure C.3: Squats

67

0 10 20 30 40 50 60
−2.9

−2.8

−2.7

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1

−2
x 10

4

Training Iteration

L
o
g
a
ri
th

m
ic

 P
(O

1
,O

2
,.
..
,O

N
|m

o
d
e
l)

PUP

Figure C.4: Pushups

0 10 20 30 40 50 60
−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4
x 10

4

Training Iteration

L
o
g
a
ri
th

m
ic

 P
(O

1
,O

2
,.
..
,O

N
|m

o
d
e
l)

JCK

Figure C.5: Jumping jacks

68

0 10 20 30 40 50 60
−8

−7.5

−7

−6.5

−6

−5.5

−5
x 10

4

Training Iteration

L
o
g
a
ri
th

m
ic

 P
(O

1
,O

2
,.
..
,O

N
|m

o
d
e
l)

ARM

Figure C.6: Arm raises

0 10 20 30 40 50 60
−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2
x 10

4

Training Iteration

L
o
g
a
ri
th

m
ic

 P
(O

1
,O

2
,.
..
,O

N
|m

o
d
e
l)

CUP

Figure C.7: Uppercuts

69

	Introduction
	Current status
	Goals of this thesis
	Structure of this thesis

	Task analysis
	Available data
	Measurement sensors
	Domain knowledge of exercise
	Finding the best placement
	Similar problems

	Hardware
	Measurement hardware
	Implementation hardware

	Theory and analysis of algorithms
	Input data
	Simple types of analysis of signal
	Thresholding
	Correlation
	Dynamic time warping

	Hidden Markov models
	Vector quantization
	Discrete hidden Markov models
	Structure of hidden Markov model
	Training the model
	Finding hidden states

	Improving accuracy of HMM
	Exercise repetition template
	Multi layer perceptron
	Updating precision of segmentation marks

	Recognition system design
	Raw data acquisition
	Preprocessing
	Vector quantization
	Segmentation
	Classification
	Rep counting

	Implementation
	Datalogger
	Offline training/evaluation
	Directory tree
	Data format

	Embedded device

	Evaluation
	Dataset
	Experimental setup
	Parameters of the model
	Results
	Best model parameters
	Placement on the body
	Accuracy of counting repetitions

	Conclusions
	Software
	Collecting data program

	Visualisation of exercises (acceleration values)
	Learning curves

